Posets and their Incidence Algebras

Dylan Pentland, Albert Zhang

MIT PRIMES

 $9 \ {\rm December} \ 2016$

Background

The Incidence Algebra

Generalized Möbius Inversion

Examples of Möbius inversion

Definition

A **poset** (P, \preceq) is a set P which has a **partial order** \preceq imposed on it, and \preceq is reflexive, antisymmetric, and transitive. That is,

• For $t \in P, t \leq t$.

•
$$s \leq t$$
 and $t \leq s$ means $t = s$.

•
$$s \leq t$$
 and $t \leq u$ means $s \leq u$.

Note. This does not mean that for all $s, t \in P$ we have $s \leq t$ or $t \leq s$. There need not be a comparison under \leq , and when this is the case we call s, t incomparable. This is shown by writing s||t.

Drawing a poset

Definition

The **Hasse diagram** of a poset is a graph where $s \in P$ is a vertex, and s, t are connected by an edge if $s \leq t$ and there is no u such that $s \prec u \prec t$. If $s \leq t$, s is placed above t in the Hasse diagram.

We can say that posets P and Q are **isomorphic** if we can create an order preserving bijection ϕ between them. This is denoted $P \cong Q$.

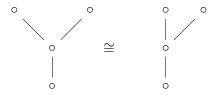


Figure 1: Isomorphic Hasse diagrams of a 4-element poset.

Definition

A closed **interval** [a, b] is the set of all $p \in P$ such that $a \leq p \leq b$. The set of closed intervals is denoted Int(P).

Definition

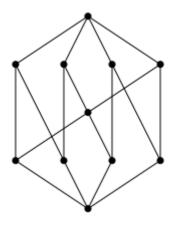
A chain is a collection of elements t_i of a poset P such that $t_0 \prec t_1 \ldots \prec t_n$.

Definition

A **multichain** s a collection of elements t_i of a poset P such that $t_0 \leq t_1 \ldots \leq t_n$.

Examples

What do chains and intervals look like in a Hasse diagram?



Definition

The **incidence algebra** on a poset P over a field K, denoted I(P, K) is a K-algebra over the vector space of functions

$$f: \operatorname{Int}(P) \to K$$

equipped with the bilinear product called convolution, denoted *, given by

$$f \ast g([s,u]) := \sum_{s \preceq t \preceq u} f([s,t])g([t,u]).$$

Note. It is usually not necessary to use fields where $ch(K) \neq 0$, so using $K = \mathbb{C}$ is often sufficient when working with I(P, K). From this point on, we will use $I(P, \mathbb{C})$.

The delta function δ is given by

$$\delta([s,t]) = \begin{cases} 1, s = t \\ 0, s \neq t \end{cases}$$

٠

It is a two sided identity under convolution: $f * \delta = \delta * f = f$.

The zeta and Möbius functions

The **zeta** function ζ is given by

$$\zeta([s,t]) = 1.$$

We define the **Möbius** function μ is defined by

$$\mu * \zeta = \delta$$

Proposition

The function μ can be computed by setting $\mu([s,s]) = 1$, and

$$\mu([s,u]) = -\sum_{s \preceq t \prec u} \mu([s,t]).$$

One major reason is that the zeta function is extremely useful for counting chains. Denote f^n as $f * f \dots * f$ n times for $f \in I(P, \mathbb{C})$. Then we have the following propositions: Proposition

$$\zeta^n([s,t]) = \sum_{s \leq s_1 \cdots \leq s_{n-1} \leq t} 1.$$

Proposition

The function $(\zeta - \delta)^n([s,t])$ counts the number of chains in the interval [s,t].

Theorem (Möbius Inversion)

Let P be a poset where for every $t \in P$ the order ideal Λ_t is finite. For $f, g: P \to \mathbb{C}$ we have

$$g(t) = \sum_{s \preceq t} f(s) \zeta([s,t]) \Leftrightarrow f(t) = \sum_{s \preceq t} g(s) \mu([s,t])$$

for all $t \in P$.

Note. The order ideal Λ_t is defined as the set of elements less than t.

Proving the theorem

Take \mathbb{C}^P , the set of functions $f: P \to \mathbb{C}$. Then $I(P, \mathbb{C})$ acts on \mathbb{C}^P via

$$(f\mathcal{I})(t) = \sum_{s \preceq t} f(s)\mathcal{I}([s,t])$$

for $f \in \mathbb{C}^P, \mathcal{I} \in I(P, \mathbb{C})$. Then we have the equivalent statement to Möbius inversion

$$g = f \zeta \Leftrightarrow f = g \mu.$$

Note. Here, $I(P, \mathbb{C})$ acts on the right. We get a 'dual' theorem by acting on the left.

Example

Let B_n be the poset with underlying set $\{S \mid S \subseteq [n]\}$ and partial order \leq given by $S \leq T$ if $S \subseteq T$. We then have

$$\mu_{B_n} = (-1)^{|T-S|}$$

Applying Möbius inversion, we obtain

$$g(T) = \sum_{S \subseteq T} f(S) \Leftrightarrow f(T) = \sum_{S \subseteq T} g(S)(-1)^{|T-S|}$$

Setting $f(T) = f_{=}(T)$ where $f_{=}$ counts objects having exactly the properties in T, and $g(T) = g_{\leq}(T)$ where g_{\leq} counts objects having at most the properties in T we obtain the principle of Inclusion-Exclusion.

Example

Take the 'divisor poset' D_n , which has an underlying set of $\{d: d \in \mathbb{N}, d|n\}$ and partial order \leq given by $a \leq b$ if a|b. We obtain that

$$\mu_{D_n}([s,t]) = \begin{cases} (-1)^k \text{ if } t/s = \prod_i p_i \text{ for distinct primes } p_i \\ 0 \text{ otherwise} \end{cases}$$

from which it follows

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} g(d) \mu_{D_n}([d, n]).$$

The authors would like to thank the MIT PRIMES program for making this work possible, as well as Atticus Christensen for guiding them through the material.