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What is a poset?

Definition
A poset (P,�) is a set P which has a partial order � imposed
on it, and � is reflexive, antisymmetric, and transitive. That is,

I For t ∈ P, t � t.
I s � t and t � s means t = s.

I s � t and t � u means s � u.

Note. This does not mean that for all s, t ∈ P we have s � t or
t � s. There need not be a comparison under �, and when this
is the case we call s, t incomparable. This is shown by writing
s||t.



Drawing a poset

Definition
The Hasse diagram of a poset is a graph where s ∈ P is a
vertex, and s, t are connected by an edge if s � t and there is no
u such that s ≺ u ≺ t. If s � t, s is placed above t in the Hasse
diagram.

We can say that posets P and Q are isomorphic if we can
create an order preserving bijection φ between them. This is
denoted P ∼= Q.

◦

◦

◦ ◦

∼=

◦

◦

◦ ◦

Figure 1: Isomorphic Hasse diagrams of a 4-element poset.



Basic terms in a poset

Definition
A closed interval [a, b] is the set of all p ∈ P such that
a � p � b. The set of closed intervals is denoted Int(P ).

Definition
A chain is a collection of elements ti of a poset P such that
t0 ≺ t1 . . . ≺ tn.

Definition
A multichain s a collection of elements ti of a poset P such
that t0 � t1 . . . � tn.



Examples

What do chains and intervals look like in a Hasse diagram?



The Incidence Algebra

Definition
The incidence algebra on a poset P over a field K, denoted
I(P,K) is a K-algebra over the vector space of functions

f : Int(P )→ K

equipped with the bilinear product called convolution, denoted
∗, given by

f ∗ g([s, u]) :=
∑

s�t�u
f([s, t])g([t, u]).

Note. It is usually not necessary to use fields where ch(K) 6= 0,
so using K = C is often sufficient when working with I(P,K).
From this point on, we will use I(P,C).



The identity in I(P,C)

The delta function δ is given by

δ([s, t]) =

{
1, s = t

0, s 6= t
.

It is a two sided identity under convolution: f ∗ δ = δ ∗ f = f .



The zeta and Möbius functions

The zeta function ζ is given by

ζ([s, t]) = 1.

We define the Möbius function µ is defined by

µ ∗ ζ = δ.

Proposition

The function µ can be computed by setting µ([s, s]) = 1, and

µ([s, u]) = −
∑

s�t≺u
µ([s, t]).



Why does the zeta function matter?

One major reason is that the zeta function is extremely useful
for counting chains. Denote fn as f ∗ f . . . ∗ f n times for
f ∈ I(P,C). Then we have the following propositions:

Proposition

ζn([s, t]) =
∑

s�s1···�sn−1�t
1.

Proposition

The function (ζ − δ)n([s, t]) counts the number of chains in the
interval [s, t].



Möbius Inversion Theorem

Theorem (Möbius Inversion)

Let P be a poset where for every t ∈ P the order ideal Λt is
finite. For f, g : P → C we have

g(t) =
∑
s�t

f(s)ζ([s, t])⇔ f(t) =
∑
s�t

g(s)µ([s, t])

for all t ∈ P .

Note. The order ideal Λt is defined as the set of elements less
than t.



Proving the theorem

Take CP , the set of functions f : P → C. Then I(P,C) acts on
CP via

(fI)(t) =
∑
s�t

f(s)I([s, t])

for f ∈ CP , I ∈ I(P,C). Then we have the equivalent statement
to Möbius inversion

g = fζ ⇔ f = gµ.

Note. Here, I(P,C) acts on the right. We get a ‘dual’ theorem
by acting on the left.



Inclusion-Exclusion

Example

Let Bn be the poset with underlying set {S | S ⊆ [n]} and
partial order � given by S � T if S ⊆ T . We then have

µBn = (−1)|T−S|.

Applying Möbius inversion, we obtain

g(T ) =
∑
S⊆T

f(S)⇔ f(T ) =
∑
S⊆T

g(S)(−1)|T−S|.

Setting f(T ) = f=(T ) where f= counts objects having exactly
the properties in T , and g(T ) = g≤(T ) where g≤ counts objects
having at most the properties in T we obtain the principle of
Inclusion-Exclusion.



Möbius Inversion (number theory)

Example

Take the ‘divisor poset’ Dn, which has an underlying set of
{d : d ∈ N, d|n} and partial order � given by a � b if a|b. We
obtain that

µDn([s, t]) =

{
(−1)k if t/s =

∏
i pi for distinct primes pi

0 otherwise

from which it follows

g(n) =
∑
d|n

f(d)⇔ f(n) =
∑
d|n

g(d)µDn([d, n]).
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